
 
 

Simplifying the Utilization of Grid Computation 
using Grid Wizard Enterprise 

Release 1.00 
 

Marco Ruiz1, Neil C. Jones2 and Jeffrey S. Grethe1 
 

May 19, 2008 
 

1Center for Research in Biological Systems, University of California at San Diego, La Jolla, CA 
2Computer Science Department, University of California at San Diego, La Jolla, CA 

Abstract 
 

The field of high performance computing (HPC) has provided a wide array of strategies for supplying additional computing 
power to the goal of reducing the total “clock time” required to complete large scale analyses. These strategies range from the 
development of higher performance hardware to the assembly of large networks of commodity computers. However, for the non-
computational scientist wishing to utilize these services, usable software remains elusive. Here we present a software design and 
implementation of a tool, Grid Wizard Enterprise (GWE; http://www.gridwizardenterprise.org/), aimed at providing a solution to 
the particular problem of the adoption of advanced grid technologies by biomedical researchers.  GWE provides an intuitive 
environment and tools that bridge this gulf between the researcher and current grid technologies allowing them to run inter-
independent computational processes faster by brokering their execution across a virtual grid of computational resources with a 
minimum of user intervention.  The GWE architecture has been designed in close collaboration with biomedical researchers and 
supports the majority of every-day tasks performed by computational scientists in the fields of computational biology and 
medical image analysis. 
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1  Introduction  
Research in the computational sciences seems to proceed, roughly speaking, in distinct phases. As an 
initial idea for a computational protocol is refined, a researcher will iteratively debug and improve 
applications on a small amount of handpicked data, tweaking parameters and inspecting output for 
correctness. Once the idea returns plausible results and can be considered publication-worthy, the 
program gets run on more and more data, often involving a new round of debugging as new classes of 
pathological inputs are discovered. During this phase, the computational protocol undergoes systematic 
characterization: for what parameter ranges does it return valid results? Can any immediate conclusions or 
further hypotheses be derived from running on publicly available data? Finally, once the computational 
protocol is ready to be released to the scientific community, a researcher must decide how to distribute the 
code. Increasingly, providing a publicly accessible website is an attractive alternative to making code 
available for download: releasing new improvements or bug-fixes to the code is substantially easier, and 
only the user interface requires documentation. 
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It is a lucky coincidence that the research process – including the hosting of an algorithm in a web 
environment – itself falls into the already useful class of embarrassingly parallel problems, that is to say, 
resource-intensive computational problems that can be broken into independent subunits that can run in 
parallel. A researcher who faces such a problem must deal with a number of tedious issues: how to 
determine what work needs to be done and how it should be broken into meaningful units (workload 
definition); how to assign individual work units to resources (application scheduling1,3); how to run and 
monitor executables (grid execution; e.g. Globus2); and how to deal with system-related and program-
related failures (failure detection). Though each of these problems can be solved in a straightforward way, 
the combined solutions to all of them leads to a maintenance problem, interferes with distribution, and 
presents an additional barrier to a scientist trying to investigate a particular problem. It is our view that a 
researcher expert in a particular scientific discipline should not need to also become an expert in grid 
computing in order to produce an application that uses grid technology. It is also our observation that the 
bulk of computational scientists do not have at their disposal dedicated programmers and system 
administrators to plan, install, configure, and maintain a complex heterogeneous network of computers.  
 
To reflect these needs we have designed a system, Grid Wizard Enterprise (GWE) that facilitates the 
above considerations, which we derived based partly on our own experiences performing computational 
science in bioinformatics and partly on observing others doing the same. It is important to note that GWE 
is not meant to be another grid middleware package, rather, it is meant to be a large-scale job launching 
and management tool that bridges the gulf between the biomedical researcher and current grid 
middleware by: 
 

• Providing the researcher with the ability to easily configure the heterogeneous clustered/grid 
resources that they have access to. 

• Allowing a researcher to easily specify large parametric computational jobs using the same 
general syntax as is used in the command line invocation of the analysis algorithms (e.g. see 
P2EL in Section 4) or through integration with community developed biomedical applications 
(e.g. see Slicer in Section 5). 

• Managing the most common house keeping tasks required to ensure end-to-end success of a 
computation thereby relieving the researcher of this burden. 

2  Processes Parallelization Problem 
With current application scheduling frameworks (e.g. Condor1, SGE3) it would appear that the end user 
has an easy to use platform to broker the execution of his processes, however, unless his processes are 
extremely straightforward and trivial, the end user faces a daunting challenge. Most real application 
scheduling requests require the resolution of issues that, even in the presence of a powerful resource 
manager, have to be resolved by the end user: 
 

1. Uploading the data to be processed to the cluster (localization) 
2. Submit all processes to compute nodes (queue jobs in resource managers). 
3. Monitor processes execution progress (real time and querying on demand). 
4. Send / receive custom alert notifications (certain interesting conditions reached such as a 

percentage of processes completed execution).  
5. Failover and recovery from cluster and environment related problems. 
6. Failover and recovery from processes related problems. 
7. Gathering and compilation of processing results. 
8. Uploading result data to the storage resource of your choice. 
9. Cleaning up the original and result data from the cluster data storage resource. 
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In addition, clusters are, typically, shared multi-user organizational resources and cannot be monopolized; 
which means that every single one of the previous issues become more complicated to overcome; and 
new ones (such as coordination of user data workspaces, access to and utilization of multiple 
heterogeneous cluster environments, etc) expand the list. This solution is far from straightforward and 
requires a great deal of expertise from most end users to consider it practical.   
 
Two different solutions have evolved, as a way to bridge this gap: users gathering a considerable level of 
technical knowledge, which takes time and effort away from their actual domain problems; and the 
creation, (by technically savvy users and/or IT departments), of highly customized scripts and 
applications tailored to specific parallelization problems.  Both these avenues don’t provide the broader 
community of biomedical researchers with the ability to easily harness the growing number of clustered 
computational resources available to them. 

3  Grid Wizard Enterprise (GWE) 
GWE is a distributed enterprise system (Figure 
1) that was designed to be a practical solution 
for end users to easily and effectively 
parallelize and broker the execution of their 
inter-independent processes on clustered or 
grid environments they have access to. This 
system provides a solution for the issues 
previously mentioned in Section 2 and with a 
high degree of modularity which allows third 
parties to extend and customize the GWE 
system. In order to lower the barrier for use by 
the typical biomedical researcher, the only 
requirements the system has over the 
environment it would be running on are to have 
available java 1.5 or higher and operate over a 
SSH enabled network. 

3.1  Distributed System 
From a user’s perspective, GWE is composed 
of the following subsystems: 

 
a) GWE Client - System running on end users 
machines to communicate with a ‘GWE Grid’ 
in order to query the execution status of 
previously submitted requests and submit new 
ones. This client can be access through the 
command line or integrated within a 
biomedical application. 
 
b) GWE Daemon - System(s) running on clusters’ head node to serve, on one end, as a listener for end 
user requests, on another end, as a job dispatcher and monitor for the respective cluster.  In addition, 
GWE daemons can communicate with one another when a user has requested a computation to be 
executed on multiple clusters. 
 

Figure 1: GWE Grid 



  4    
 

Typically, end users would connect to a particular ‘GWE daemon’ (running on a host on a reachable 
TCP/IP based network) using a ‘GWE client’.  A GWE client’s configuration consists of: the list of 
clusters that compose the user’s accessible grid resources, SSH authentication information of all the 
networked resources to be accessed (clusters, file systems, etc) and locations of applications to auto-
deploy. 
 
GWE daemons are easily deployed through an automated process in the GWE client distribution and can 
be installed by any user with a valid SSH account on a cluster head node. Such an instance can be 
installed by the cluster’s administrator using a dedicated cluster account or by individual users setting up 
their own dedicated GWE system. At runtime, GWE daemons will silently spawn low level ‘agent type’ 
sub-systems, which are scheduled to run on the compute nodes (one ‘agent’ per allocated compute node) 
by the local cluster’s resource manager. These ‘agents’ will be in charge of the actual execution of the 
processes, monitoring status/progress/results and reporting back to the respective “daemon”.  
 
GWE daemons’ configuration consists of multiple behavioral parameters. Among the most important 
ones are the ones used for its ‘compute node allocation policy’, such as queue size (maximum number of 
compute nodes allocated at any given time), “hijack” timeout (maximum time a compute node can remain 
allocated with active jobs before “releasing” its controlling agent) and “idle” timeout (maximum time a 
compute node can remain allocated with nothing to do before “releasing” its controlling agent). 

3.2  Architecture & Design 
All GWE subsystems have been architected as a 
set of independent modules and frameworks, 
glued declaratively using the ‘Spring’ application 
framework. Such modules have been designed 
with a robust and scalable infrastructure and with 
multiple levels of abstraction to provide a high 
degree of extensibility. 
 
One of the most common extensible modules is 
the “GWE Client API” (Figure 2); used to build 
GWE client applications or empower applications 
with GWE client capabilities. Currently there are 
a few GWE client applications built using this 
API and they will be reviewed in more detail 
later in this paper. Internally this API contains 
many extensible sub-modules most of which have 
been further developed to reduce the effort required to add/change functionality. An example of this is the 
“abstract job descriptor” component; which can be extended to support languages other than P2EL, or 
even workflows with inter-dependent jobs.  
 
Finally, one set of extensible modules, which deserves a special mention are the ‘grid related resource 
drivers’. These drivers provide GWE with means to support new types of file systems, network protocols 
and cluster resource managers (which are auto detected per cluster when a GWE daemon is deployed). 
GWE comes out of the box with drivers to support the following ‘resources’: 
• File Systems: Local, HTTP and SFTP. 
• Network Protocols: Local and SSH. 
• Resource Managers: Condor, SGE and PBS.  
 

 

Figure 2: GWE Client Architecture 
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GWE daemons (Figure 3), include other robust 
enterprise level features. Some of the most 
important are: sandbox workspaces and virtual 
file systems per user to provide a scalable multi-
user system; highly multithreaded services to 
avoid wait cycles and achieve maximum 
performance; embedded database to persist 
operational data (users, orders, jobs, clusters, etc) 
and automatic failover and recovery from cluster, 
environment and process specific related 
problems. 
 
However, the GWE system was designed to 
allow any biomedical researcher to easily access 
their available compute resources with tools they 
normally utilize: the command line, SSH and 
domain specific applications. Therefore, the GWE inter subsystem communications infrastructure has 
been architected as a secured RPC backbone using a Java RMI network tunneled over SSH. This 
tunneling infrastructure consists of a framework, which transparently injects a series of hooks (socket 
proxy, heartbeat emitters and heartbeat checkers) into the communications using interceptors and AOP 
(aspect oriented programming). Besides providing a secured communication infrastructure this approach 
takes away the requirement for users or cluster administrators to open additional IP ports in clusters 
firewalls. 

4  Usage and Integration with External Applications 

4.1  GWE Client Applications 
The GWE Client API, is a java API that allows developers to build highly customized GWE clients (see 
Slicer3 integration section). However, out of the box, GWE comes with two generic GWE client 
implementations:  
 
a) GWE Terminal (Figure 4) is a console application; which keeps a live connection to a particular 
GWE daemon and allows the user to interactively query status information and submit requests. This 
application will remain alive and connected to the GWE daemon until an 'exit ' or 'quit ' command is 
issued. This application includes rich command line features such as inline editing, tab completion and 
command history. This application is ideal when the user is going to interact for a while with a GWE 
daemon. 

 
a) GWE Commands are Java command line applications; each meant to give the end user the 
capabilities to access a particular daemon. Usage of these applications is slightly more expensive than 
using the GWE Terminal since a brand new network connection has to be established every time they are 
invoked. However, they provide quick command line access to a GWE daemon and a basic API for 
integrating GWE requests programmatically. 
 
This API provides a great number of functions; which can be categorized as execution request functions, 
query status functions and monitoring functions. While the first two categories of functions are initiated 
by end user communication, monitoring is requested by the user and initiated by the daemon as real time 
notification events.  
 

Figure 3: GWE Daemon Architecture 
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4.1.1  P2EL (Process Parallelization Execution Language) 
In order to provide the semantics for users to easily and effectively describe a group of process 
invocations including all related parallelization meta-instructions, a simple but powerful language (P2EL) 
has been designed for GWE (and an appropriate interpreter built into it). This language is a combination 
of pseudo bash and pseudo VLT (Velocity Template Language). This language has semantics to define: 
 
• Process Invocation Template is a Bash 

like, meta-template containing iteration 
variables references (substitution 
expressions). This template will be used to 
generate all the process invocations of the 
respective P2EL statement. 

• Substitution Expressions are “bash like” 
variable expressions embedded in the 
template to be replaced by the 
corresponding value-space. 

• Iteration Variables are variables 
associated with a value-space set, which 
when applied to a process invocation 
template, generate a collection of processes 
invocations. This construct gets its values 
explicitly or implicitly through numerous 
ways including runtime value resolving 
functions.  

• System Variables are variables associated 
with a system and/or contextual property 
resolved at runtime for a specific job (e.g. 
the iteration number generated by GWE 
and user home). 

• Script Loading. Construct to instruct that 
the process invocation template shall be 
read from a specific file. 

• Staging Files Instructions and Locations. Construct to instruct how to stage remote files into the 
context of process invocation (before executing it) and how to stage files produced by the process 
invocation out to selected destination locations.  

 
The following P2EL command illustrates a real use case example used in medical imaging to submit a 
large scale parameter exploration of an analysis algorithm which can result in 1000s of actual analyses. 
This command instructs GWE to run Slicer’s “BSpline Deformable Registration” for each moving image 
found that matches the wildcard pattern ‘sftp://srcHost/srcDir/moving-*.nrrd’ against the fixed image 
‘http://otherSrcHost/otherSrcDir/fixed.nrrd?view=co’, for each possible combination of values for: 
iterations (ITER = 10, 20, 30, 40 and 50), histograms (HIST = 020, 040, 060, 080 and 100) and  samples 
(SAMP = 0500, 1500, 2500, 3500 and 4500).  The output is saved under the remote directory 
‘sftp://destHost/destDir/’ with the name ‘out-[ITER_ID].nrrd’, where ‘[ITER_ID]’ is the unique auto-
generated identifier of the job. It is important to note that the P2EL command line has the same general 
form as the original Slicer command (in italics) with the addition of the specification of the iteration 
variables and substitution expressions.  
 
 

Figure 4: GWE Terminal 
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Slicer3 --launch /usr/Slicer3/lib/Slicer3/Plugins/BSplineDeformableRegistration  
--iterations 10 --gridSize 5 --histogrambins 20 --spatialsamples 500 
--maximumDeformation 1 --default 0  
--resampledmovingfilename out.nrrd f.nrrd m.nrrd 
 
queue-order ${MOV}=f:expand(sftp://srcHost/srcDir/moving-*.nrrd) ${ITER}=[10..50||10] 
${HIST}=[20..100||020] ${SAMP}=[500..5000||1000]  
Slicer3 --launch /usr/Slicer3/lib/Slicer3/Plugins/BSplineDeformableRegistration  
--iterations ${ITER} --gridSize 5 --histogrambins ${HIST} --spatialsamples ${SAMP}  
--maximumDeformation 1 --default 0  
--resampledmovingfilename f:out(sftp://destHost/destDir/out-f:sys(ITER_ID).nrrd)  
f:in(f.nrrd,http://otherSrcHost/otherSrcDir/fixed.nrrd?view=co) f:in(m.nrrd,${MOVING}) 

4.2  GWE-Slicer3 Integration 

4.2.1  Slicer3 
The National Alliance for Medical Image Computation’s (NA-MIC) Slicer34 (http://slicer.org/) is a “free, 
open source software package for visualization and image analysis. Slicer's capabilities include: 
interactive visualization of images, manual editing, fusion and co-registering of data, automatic 
segmentation, analysis of diffuse tensor imaging data, and visualization of tracking information for 
image-guided procedures. Some of the core functionality that enables these applications include the 
capability to save and restore scenes using a format called MRML, a plug-in architecture to interface to 
external programs including ITK, a sophisticated statistical classification environment based on the EM 
algorithm, capabilities for rigid and non-rigid data fusion and registration, and processing of DTI MRI 
data.”5  

4.2.2  Objective 
Researchers often encounter the need to run medical imaging algorithms over a large set of values to be 
permutated for different arguments (see P2EL example above), from algorithm calibration parameters to 
sets of images (i.e. sets of images utilized for testing an algorithm to large collections of images collected 
as part of a study that are ready to be processed). Executing all these processes on a single computer may 
take a really long time depending on the amount of processes and the number of file transfers.  In 
addition, the gathering of results  requires a lot of manual work and is highly prone to error. 
 
Slicer3, provides an infrastructure to easily integrate medical imaging applications (‘modules’) as self-
describing pluggable components. Taking advantage of this feature, GWE can be generically integrated 
with Slicer3 to allow researchers to execute their set of processes in parallel across distributed grid 
environments while handling all the ‘side’ tasks that otherwise would have to be done manually. This 
way, Slicer3 provides the means for users to dramatically reduce their processing time by facilitating a 
transparent "run-everywhere" philosophy for algorithm developers. 

4.2.3  Design 
Slicer3 modules execute as regular command line applications, which must conform to a straightforward, 
proprietary specification. This specification requires these modules to “self describe” when invoked with 
the predefined reactor argument of ‘--xml’ which results in the generation of a proprietary XML 
descriptor stating the module’s arguments metadata (flags, types of values, label, etc). Slicer3 uses this 
metadata to dynamically render an appropriate UI to collect the values for each argument and to generate 
the module command line invocation when needed to run the module per a user’s request. 
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The integration effort consists of installing the ‘GWE Client API’ inside a Slicer3 installation and 
generating new Slicer3 modules (Figure 5), one for each ‘regular’ Slicer3 module intended to be 
leveraged with grid computing capabilities. These new modules are called “GWE CLMPs” (command 
line module proxies) and the user can utilize them when trying to run a set of processes in a distributed 
grid environment, otherwise they can work as usual with the ‘regular’ versions. This effort includes a 
‘bundling’ utility which installs GWE inside a Slicer3 distribution, introspects it to discover all its 
pluggable modules and dynamically generates a corresponding GWE CLMP for each of them. The end 
result is the grid-enabled version of Slicer3, which we call GSlicer3. 
 
When GSlicer3 is launched, the end user will 
notice that (in the available modules menu) for 
every regular module, there is another named 
exactly the same with the additional suffix of “ 
– GWE Powered” (Figure 6). These correspond 
to the CLMPs modules that have been auto 
generated by the ‘bundling’ utility. 
 
GWE CLMPs are intelligent agents, which 
conform to the Slicer3 module specification 
responding as required to the predefined 
reactors and have an explicit association to 
their corresponding ‘regular’ version module. 
The proxied module creates their “self 
description” by retrieving the “self description” 
of their associated ‘regular’ version module and 
enhancing them with the appropriate grid 
computing related descriptions. Using these 
dynamically generated “self descriptions”, 
Slicer3 is able to render a suitable UI  (Figure 7) to capture the necessary arguments to execute 
invocations of the associated module on the grid. Also, such UIs support P2EL semantics so value added 
functions (file transfers, wildcard resolution, etc) are all available. 

Figure 6: Grid enabled modules 

Figure 5: Slicer3 /GSlicer3 Architecture Comparison 
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A CLMP in essence is a “GWE client application” which at runtime will carry on the following tasks:  
 
• Retrieve, add and modify the XML tags 

of their proxied CLM's XML descriptor 
in order to add arguments/fields to 
set/capture specific GWE parameters and 
P2EL value types. 

• Generate a GWE order with the P2EL 
command corresponding to the user’s 
input appropriately translated to the 
selected cluster (Slicer3 location on the 
cluster, user home directory, etc). 

• Install a customized Slicer result parser 
to the GWE order. 

• Submit the GWE order created to the 
remote selected cluster, over the secured 
RPC GWE network. 

• Monitor, in real time, the execution 
progress of the localized proxied CLM 
invocations (from the GWE order) on the 
selected cluster. This real time 
monitoring is also performed over the 
secured RPC GWE network. 

• Keep track of the CLMP progress as a ratio of the number of proxied CLMs invocations already 
executed divided by the total amount of proxied CLMs invocations associated with the GWE order 
submitted. 

• Notify Slicer3 of this progress using Slicer3 XML based progress API (<filter-XXX > tags sent to the 
standard output of the CLMP). 

 
 

Figure 7: Grid enabled module UI 

Figure 8: GSlicer3 Execution Flow 
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This integration effort provides a generalized, easy to use grid computing enabled interface to all Slicer3 
CLMs that are “Standard Execution Model” compliant.  

5  Future Work 
This system is currently in its 4th alpha release. The current project plan is to release a new version every 
6 weeks and release the first feature complete beta version in the beginning of 2009. In order to reach the 
beta release, the product is going through extended testing with biomedical researchers to elicit usability 
and functional requirements. As a result of this testing the following feature set is being finalized (a-d), 
implemented (e-h) and tested: 

a. Application registry framework - provides capabilities to auto-deploy applications to running 
clusters on an as needed basis. Currently the Slicer3 integration described above assumes that 
Slicer3 is installed on the running clusters. 

b. Multi-cluster module - provides true grid abstraction through the ability of GWE to distribute jobs 
to a specified set of clusters in a “daisy chain” configuration. 

c. Array of iteration variables feature - provides the means to specify a set of values-sets to apply all 
at once as a single variable. For example: VAL_SET=[(0,10,20),(15,27,-3)] would create 1 
permutation with the first set of 3 values and a second permutation with the second set. 

d. Parametrical order behavioral logic - provides the means for end users to customize execution 
aspects of the jobs associated with an order, such as, job timeouts, launch mode, file system clean 
up policy, maximum concurrent jobs running, etc. 

e. Alert notification module - provides the means for end users to specify job runtime conditions 
under which the system shall send notifications to customizable recipients (typically an email to a 
specified email address). 

f. Job result parser framework - provides an infrastructure for the end user to create his/her own result 
parser to inject into a specific order so it can extract meaningful structured data out of the job 
results. 

g. Additional grid related drivers for file system drivers (i.e. SRB, XCEDE based XML file catalogs, 
and GridFTP) and resource managers (e.g. Torque). 

h. Portal client integration as JSR-168 portlets that can be deployed to any standards based portal 
container. 
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